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Abstract

This paper analyzes and forecasts hydrologic stage data in the Loxahatchee National Wildlife Refuge, the northernmost

extent of the Florida Everglades. Analysis indicates that the process dynamics are chaotic, for which several attractor invariants

are evaluated. A connection is made between the Kolmogorov-Sinai (KS) entropy of the phase-space trajectories and limits of

temporal stage predictability. Evaluation of the KS entropy establishes a boundary for forecast time periods. Comparisons are

presented between inferences produced by linear statistical models and the nonlinear attractor invariants. A nonlinear estimator

(feedforward neural network), along with several linear models are employed to perform temporal forecasts of stage data. The

observed degradation of forecast accuracy is consistent with the limits inferred from the attractor entropy. The nonlinear

estimator is found to have better prediction accuracy than the linear models for prediction intervals beyond several days.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Many applications of analytical scrutiny applied to

real-world, physical systems are based on assump-

tions of linearity. These assumptions are often taken

for granted, and may lead to inaccuracies as a result of

applying linear modeling and forecasting techniques

to physical systems that exhibit nonlinear dynamics.

Nonlinear dynamics are nherent in chaotic systems:

multivariate processes that exhibit internal order, long
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term stability, sensitive dependence on initial

conditions and significant dynamic variations. While

the process dynamics are stable in a global sense, the

local phase-space trajectories of chaotic system

variables are inherently unpredictable as forecast

time scale increases. Chaotic systems maintain

exquisite balances between the nonlinear forces of

dissipation, randomness and internal order, and

therefore, are often not best analyzed in the linear

domain. It is notable that such realizations evolved

from the celebrated work of Lorenz (Lorenz, 1963)

who was concerned with forecasting atmospheric

flows. Subsequently, evidence of chaotic behavior in

hydrological time-series has been found since the late
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1980s. Even though much debate ensued over the

veracity of some of these findings, it is now well

accepted that low-dimensional determinism is indeed

a feature of many hydrological processes (Sivakumar,

2000, 2004). In addition to the detection of chaotic

behavior in hydrological processes, application of

nonlinear forecasting methods such as artificial neural

networks (ANN) (Elshorbagy et al., 2002a,b; Sivaku-

mar et al., 2002; Lambrakis, 2000), k-nearest

neighbors (Elshorbagy et al., 2002a), and phase-

space reconstruction (Sivakumar et al., 2002) have

resulted in viable nonlinear forecasting procedures.

The majority of these analysis have focused on

rainfall or stream flow dynamics (Sivakumar, 2000,

2004), while to the authors knowledge, few have

addressed waterbody volume/stage dynamics (San-

goyomi et al., 1996).

This study applies the methods of nonlinear

dynamical systems theory to the analysis of daily

hydrologic stage variations in the Loxahatchee

National Wildlife Refuge. It is suggested that the

process dynamics are chaotic; meaning that the phase-

space attractor has a fractal dimension, a positive

Lyapunov exponent, and occupies a finite domain.

These features imply that linear modeling of the stage

evolution could lead to inaccuracies in forecasting.

Quantification of several attractor invariants leads to

an estimate of the dimensionality of the dynamics, as

well as a measure of the local trajectory divergence.

Through connection of the trajectory divergence rate

and the information capacity of the attractor in terms

of the observed state values of the dynamics, a limit

on the predictability of fine-scale stage forecasting is

established. Comparisons to the predictability inferred

from linear correlations are presented.

Having established some properties of the non-

linear dynamics, the study turns to application of a

nonlinear model applied to forecasting the stage data.

An artificial neural network is constructed to learn,

and predict stage evolution within the boundaries of

the identified predictability limits. The neural network

is employed to forecast stages for future days over a

16 year time period, based on two years of training

data. Additionally, several linear models are

constructed and their forecasting results compared to

those of the ANN. Errors of the forecasts are

examined with respect to the predictability derived

from analysis of the attractor dynamics.
To provide a basis for subsequent discussion on the

features of linear and nonlinear modeling, a brief

review of the two approaches is outlined below.
1.1. Linear models

Consider a linear system with f degrees of freedom

where the time evolution of each component is

described by the vector mðtÞZ ½m1ðtÞ;m2ðtÞ;.;mf ðtÞ�

so that

dmðtÞ

dt
Z A$mðtÞ (1)

where A is a constant f!f matrix. Solution of this

equation specifies trajectories of m(t) in f-space for

which one of three outcomes is possible:
1.
 Real part of the eigenvalues of A are positive.
2.
 Real part of the eigenvalues of A are negative.
3.
 Eigenvalues of A occur in complex-conjugate

pairs with either zero or negative real parts.

In the case of negative eigenvalues, the trajectories

of m(t) eventually collapse to a stable point, such as in

the case of a pendulum subjected to friction. If only

positive eigenvalues are present the orbits of m(t)

grow to infinity, a situation which clearly invalidates a

stable physical model. The occurrence of positive

eigenvalues ensures that the assumption of linear

dynamics is incorrect, in which case one may employ

nonlinear evolution equations to better approximate

the dynamics.

In most modeling applications one has access to

sampled versions of the process dynamics at a fixed

spatial point

sðnÞ Z sðt0 CntsÞ (2)

where t0 is the initial time and ts the sampling interval

for the nth observation. In linear analysis, it is

assumed that the observations are linearly related to

previous observations and forcing terms

sðnÞ Z
XN

iZ1

aisðn K iÞC
XM

jZ1

bjfðn K jÞ (3)

where the ai and bj are model coefficients and f

represent the forcing terms. This integral represen-

tation is typically cast into an algebraic form through
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application of the z-transform (discrete Fourier trans-

form) resulting in

SðzÞ Z
X

n

znsðnÞ Z

PM
jZ1 bjz

j

1 K
PN

iZ1 aiz
i
FðzÞ (4)

where F(z) is the z-transform of f. The task is then

one of judiciously selecting the coefficients to

conform the model results with the observations.

From a dynamical systems perspective, the ai terms

model the linear dynamics (autoregressive), and the bj

address linear averaging of the forcing terms (moving

average), resulting in the familiar ARMA models.

This form of linear systems model will have zero or

negative eigenvalues of A and will not be the basis of

choice for modeling nonlinear, chaotic dynamics.
1.2. Nonlinear models

System modeling and analysis of nonlinear,

chaotic processes is centered on the notion of a stable

(nondivergent) geometric phase-space attractor from

which the observations evolve. It can be assumed that

the system dynamics evolve in a multivariate space

whose size and structure can be revealed through

analysis of the observations. There are no initial

assumptions imposed as to the form of the model. The

idea is to let the data itself dictate the essential

invariant features of the process dynamics. Once the

phase-space invariants are identified, interpolation

and projection of the process trajectories can provide

nonlinear estimators and predictors. The modeler is

then faced with the task of coupling physical

significance to the revealed invariants.

In order to model a dynamical system it is assumed

that a set of differential equations or discrete time

evolution rules govern the behavior of the f system

variables contained in the vector m(t)

dmðtÞ

dt
Z GðmðtÞÞ (5)

where G is a vector field that is continuous in its

variables and which is differentiable as needed. The

value of f defines the number of independent equations

required to form an orthogonal basis to describe the

system dynamics, and corresponds to the number of

phase-space dimensions required to completely

unfold the attractor so that false projections and
crossings of m are eliminated. The discrete time

extension is specified by a map from vectors in Rf to

other vectors in Rf, each at a discrete time m(n)Z
m(t0Cnts)

mðn C1Þ Z FðmðnÞÞ (6)

This expression defines the evolution equation of

the dynamical system, the vector field F encapsulates

parameters which reflect the physical properties of the

system as well as external influences of forces and

boundary conditions. From a modeling perspective,

the idea is to identify parameterized nonlinear

functions F(a) which map m(n) into m(nC1)Z
F(m(n),a) where one has applied appropriate fit

criteria to evaluate the parameters a.

It should be noted that in the current work, this

approach is not explicitly implemented in that F is not

determined by causal relationships to observable

parameters. Rather, F is ‘learned’ implicitly by the

artificial neural network and is represented internally

in the organization of the ANN weight matrix. The

ANN utilizes this internal representation of F in

forecasting stage evolutions based on current

observables.
2. Observed data

The data observations consist of daily recorded

stage values at the 1–8C stage monitoring site in the

Loxahatchee National Wildlife Refuge (WCA1). The

refuge contains one of three water conservation areas

in south Florida, and is maintained to provide water

storage and flood control, as well as habitat for native

fish and wildlife populations. These freshwater

storage areas and part of Everglades National Park

are what remain of the original freshwater Everglades.

The entire refuge comprises about 221 square miles

(147,392 acres) and is surrounded by a 57 mile canal

and levee. The primary forcing functions for the water

levels in the refuge are rainfall, and anthropogenic

pumping and drainage for regional water regulation.

The observations cover the period from 1 January

1965 through 31 December 2000, a 35 year period. A

plot of the daily time-series of stage observations

biased by the arithmetic mean is shown in Fig. 1.

Examination of the figure reveals that the data is

quasi-periodic, with significant random components,
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Fig. 1. 35 Year time-series of stage in WCA1.
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suggesting that there is an underlying order to the

dynamics which interact with random perturbations.

A main source of the stochastic forcing is the

rainfall, which for the same period is plotted in Fig. 2.
3. Dynamical invariants

One of the goals of dynamical systems analysis is

to identify system invariants which are insensitive to

initial conditions. Invariants encode information

regarding the structure of the system which imposes

order on the dynamics, the signal-in-the-noise.

Quantification of system invariants can also lead to

physical insights regarding the process dynamics. In

this section we examine several invariants: attractor

dimension, correlation integrals, and Lyapunov expo-

nents. The former set bounds on the number of

degrees of freedom of the differential equation model,

while the later provides quantification of the local

predictability of system states.
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3.1. Dimension

Establishing the dimension of the dynamical

process is an important first-step in constructing a

viable phase-space representation of the dynamics.

There exist several methods for achieving this, each of

which holds advantages and disadvantages. Here, we

will examine two methods for estimating the dimen-

sion: False Nearest Neighbors (FNN), and through

dimensional saturation of a system invariant. The

FNN method provides a computationally efficient and

robust algorithm for establishing an upper-bound on

the set dimensionality, however, it does not provide

noninteger estimates of dimension. Alternatively,

examination of the slope of attractor inter-point

correlation integrals can provide an estimate of the

dimension in R. Both of these methods rely upon

access to a phase-space representation of the data at an

arbitrary dimensionality; the particular level of

dimensionality corresponding to a phase-space recon-

struction is termed the embedding dimension dE.

Given that the observed data are single dimensional

(a scalar time-series measured at a single spatial

location) the appropriate recourse for reconstruction

of phase-space is time-delay embedding.
3.1.1. Time-delay embedding

Time-delay embedding (Elshorbagy et al., 2002a)

converts a discrete scalar time-series s(n) into a

d dimensional vector time-series:

mðnÞ Z ½sðnÞ; sðn CtÞ; sðn C2tÞ;.; sðn C ðd K1ÞtÞ�:

(7)

In order to select a reasonable time-delay t for the

embedding, one can simply compute the autocorrela-

tion of the scalar dataset and use the value of the first

zero-crossing of the autocorrelation. While this

obviously cannot account for any nonlinearities in

the statistical description of the interrelation between

points in the time-series, it nonetheless provides a

surprisingly robust initial estimate for an appropriate

embedding delay as it prescribes on average the delay

at which two points become statistically independent.

The autocorrelation of the data from Fig. 1 is shown in

Fig. 3. It is observed that in a linear sense, there is

significant correlation (Rssw0.8) within the period of
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one month, while there is complete time-lag indepen-

dence near tZ130 (days).

An alternative approach for establishing a time-

delay is to estimate the mutual information, M(t),

between an observation at a time t and one at some

later time tCt (Fraser and Swinney, 1986). An

advantage of this method is that it considers

nonlinearities in the data when prescribing the amount

of information that one observation adds after a

previous observation. When no new information is

apparent, the observations are completely indepen-

dent and M(t)Z0. Following (Gallagher, 1968), the

mutual information can be specified as

MðtÞZ
XN

nZ1

PðsðnÞ;sðnCtÞÞlog2

PðsðnÞ;sðnCtÞÞ

PðsðnÞÞPðsðnCtÞÞ

� �

(8)

Fig. 4 plots the mutual information of the stage data.

The initial rate of amplitude decay is greater than that

of the linear correlation, indicating that nonlinearities

serve to devolve the mutual information between

subsequent stage observations at a greater rate than

predicted by a linear correlation. Note that M(t) does

not approach zero even for large t, indicating that long-

term evolution of stage data is not independent of

previous levels, again in contradiction to the linear

analysis which finds intervals of near-zero correlation.

The usual prescription for choosing a time-delay is to
select the first minimum of M(t), which in this case

may be selected in the area of tZ90–110 days.

3.1.2. False nearest neighbors

The method of false nearest neighbors (FNN)

attempts to directly address the question: what

embedding dimension is sufficient to eliminate false

crossings of an orbit (phase-space trajectory) with

itself as a result of having projected the attractor into

too low a dimensional space? The procedure is to

define a function of ‘nearness’ between adjacent

points which depends solely on the geometrical

arrangement imposed by the coordinate dimensions,

and then iteratively increase the number of dimen-

sions until one is satisfied that there are no ‘false’

nearest neighbors (Kennel et al., 1992). That is, the

closest neighboring point has a distance which is not

an artifact of having projected the attractor into too

low a dimensional phase-space.

If the distance function between the point in

question m(n) and its nearest neighbor mNN(n) is

simply a Euclidean distance, then the distance in

dimension d is:

Dd Z
h
½mðnÞKmNNðnÞ�

2 C ½mðn KtÞKmNNðn KtÞ�2

C/C ½mðn C ðd K1ÞtÞ

KmNNðn C ðd K1ÞtÞ�2
i1=2

ð9Þ
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As the data is embedded in the next higher

dimension (dC1), this nearest neighbor distance is

changed due to the (dC1) coordinates m(nCdt) and

mNN(nCdt) to

DdC1ðnÞ Z
h
DdðnÞ

2 C ½mðn CdtÞKmNNðn CdtÞ�2
i1=2

(10)

If DdC1(n) is large, one can assume that the

‘nearness’ of the two points is a result of the

projection from some higher-dimensional attractor

down to dimension d, since in going from dimension d

to dimension dC1, we have ‘unprojected’ these two

points. One is then faced with establishing a criterion

to decide when neighbors are false, a normalized

distance metric can serve this purpose such that when

mðn CdtÞKmNNðn CdtÞ

DdðnÞ
ODFNN (11)

the nearest neighbors at time index n are classified

false. Here we use a threshold value of 15, which lies

within the range of 10!DFNN!50 where the criteria

is essentially constant (Abarbanel, 1993).

Fig. 5 presents the calculation of the percentage of

FNN of all points as a function of embedding

dimension dE with tZ90 days. The results indicate

that embedding the attractor of the scalar time-series

into a 4 dimensional phase-space will suffice to ensure
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Fig. 5. False nearest neighbors of stage data.
that all trajectory orbits are valid representations of

the attractor dynamics.
3.1.3. Correlation integrals

A popular procedure for establishing the dimension

of a scalar time-series in R is to embed the time-series

into a multiple of higher dimensions (Abarbanel,

1993) and then search for saturation of a system

invariant as the embedding dimension increases. Such

an invariant can in principle consist of any property

associated with the attractor which depends on

distances between points in the phase-space. A

popular choice is an average over the attractor of

moments of the number density. Define the number

density, the number of points on the orbit within a

radius of r of point m in the phase-space, as

hðr;mÞ Z
1

N

XN

nZ1

Qðr K jmðnÞKmjÞ (12)

where Q is the Heaviside function. The average over

all points of powers of h(r,m) defines the well-known

correlation integrals (Grassberger and Procaccia,

1983), which for the case of interpoint distances

reduces to the two-point correlation integral

C2ðrÞ Z
2

NðN K1Þ

XN

isj

Q
�

r K jmðjÞKmðiÞj
�

(13)

The correlation integral C2 is assumed to be a

geometric invariant of the system, and we compute

values of C2 as a function of embedding dimension in

order to establish the dimension at which the integral

saturates (Grassberger and Procaccia, 1983). Fig. 6

presents computation of log (C2) versus log (r) for dE

from 3 to 8. Examination of Fig. 6 reveals that when

dE reaches 4, the curves converge, indicating that the

attractor dimension is less than or equal to 4. To

estimate the dimension of the attractor the average of

the slopes of the curves in regions with converged

slopes is computed. It is noticed that there are two

such regions in this plot: log(r)2[6,10] and log

(r)2([12,15]). The difference between the two

regions may be attributed to differences in scaling

behavior of the system dynamics at these two length

scales (Abarbanel, 1993;). In the region of

log(r)2[6,10] the dimension estimate is dZ1.54,

while over the region of log (r)2[12,15] the value is
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dZ3.78. Based on the results of the FNN compu-

tation, which clearly indicated that dO2, the value of

dZ3.78 will be estimated to represent the attractor

dimensionality. To the extent that the dimensional

estimate is accurate, its fractional value provides

evidence that the attractor is a fractal set, also known

as a ‘strange attractor’, and therefore, may exhibit

chaotic behavior. It may be of interest to note that

among the many reported dimensional estimates of

hydrologic processes (Sivakumar, 2004), apparently

few have applied analysis to hydrologic stage/volume

data. The findings of Sangoyomi et al. (1996) indicate

a dimension of 3.4 for volume variations in the Great

Salt Lake, which is similar to the results we obtained

for the Loxahatchee National Wildlife Refuge.
3.2. Lyapunov exponents

While the dimension is useful for characterizing

the complexity and distribution of points in the phase-

space, it sheds no light on the dynamics of evolving

trajectories of such points. For this, one can turn to the

Lyapunov exponents (Oselecdec, 1968), li, which

quantify the rate of growth of elemental subspaces in
the phase-space. l1 relates the rate at which linear

distances grow between two points on the attractor:

two such points separated initially by an infinitesimal

distance d will, on average, have their separation grow

as d el1t. The sum l1Cl2 dictates the average growth

rate of two-dimensional areas, and in general, the

behavior of d-dimensional subspaces is described by

the sum of the first d exponents. Accordingly we

define the cumulative exponent as

L Z
Xd

iZ1

li: (14)

Since the li govern the rate of attractor expansion

and contraction, it is clear that for physically stable

systems it not possible for L to be positive, this would

indicate a globally unbounded behavior. The presence

of positive exponents is however, the hallmark of

chaos, they ensure that long-term prediction of

individual trajectories is limited owing to the

exponential divergence of neighboring points from

infinitesimal differences in initial conditions. Nega-

tive exponents arise when the trajectories of

subspaces contract. If the system is a dissipative

one, then L would be negative, ensuring that as time

progresses the attractor remains bounded in a finite

phase-space. A Hamiltonian system would exhibit

LZ0, indicating an energy balance between the

expansive and contractive dynamics.

The Lyapunov exponents are computed following

Eckmann (Eckmann and Ruelle, 1985; Eckmann

et al., 1986), for the data of Fig. 1 embedded into a

4 dimensional attractor. Fig. 7 plots the Lyapunov

spectrum of the embedded data and reveals both

positive and negative components, as well as L!0.

The presence of a positive exponent reveals the

sensitive dependence on initial conditions and trajec-

tory divergence which is associated with chaos,

further, since L!0 it is known that the attractor is

globally stable.
3.3. Phase-space attractor

The global phase space attractor of a nonlinear

dynamical process is itself a dynamical invariant.

Understanding the structure of the attractor may lead

to physical insights regarding the process dynamics,

though there is not a prescriptive algorithm for
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extraction of physical variables from those of the

phase space. In cases where this is feasible, one stands

to gain useful knowledge derived from the data itself,

which may then be applied in construction of more

accurate dynamical models. In the case of the WCA1

stage data, it is not clear what physical variables

correspond to the four necessary dimensions ident-

ified by the invariant analysis, although logical

candidates would be rainfall, anthropogenic inflows

and outflows, previous stage, and local soil hydrology.

In order to provide a view of the stage data attractor, a

plot of the first 3 phase-space dimension variables

from the reconstructed phase space vector m of Eq. (7)

is shown in Fig. 8, where the phase space variable D1

corresponds to the component m1. This figure

indicates that there is an overall structure to the

global attractor trajectories, and confirms that the

attractor occupies a finite phase space volume

required for dynamic stability.

The attractor of Fig. 8 contains some 12,000 points

derived from 35 years of daily observations, thus

making it difficult to discern any structure inherent in

individual trajectories. To provide a view of yearly

trajectories, Fig. 9 plots four time slices from the

global attractor, each time slice corresponding to

a period of 1 year. Examination of this figure reveals a

clear structure to the yearly trajectories.
4. Nonlinear estimation

There exist a plethora of nonlinear estimation

techniques which can be applied to nonlinear

models or data. If one has established a phase

space attractor which encapsulates the nonlinear

dynamics, an obvious choice is to make use of the

attractor trajectories in constructing a model of the

attractor, from which phase space forecasts can be

made given knowledge of previous state values. The

idea would be to define a mapping function F(m,a,p)

able to predict p values forward the f trajectory

components based on the current and previous orbit

points. The a are model parameters fit via a least

squares or some other criteria to converge the model

with the observed attractor data. In the case where

the attractor is embedded in a phase space for

which the independent variables are known and

connected to physical parameters, one is likely to

have success in construction of the model basis

functions, and should be in the favorable position of

being able to attach physical significance to

parametric regimes of a.

In the current analysis however, we are dealing

with a reconstructed attractor, derived from a

reconstructed phase space based on time-delay
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embedding of a scalar time-series. It would have been

preferable to have access to multi-dimensional

observations with a phase space constructed

from known independent variables, from which

the attractor basis functions and fit parameters could

be inferred. Nonetheless, we have still derived

important information from the dynamical invariants
which can be used to bound the predictability as well

as provide clues to the dimensionality for use by

nonlinear estimators. The following sections quantify

the stage predictability, and implement an artificial

neural network to predict the stage given inputs based

on physical observations guided by the dimensionality

of the attractor.
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4.1. Nonlinear predictability

Given knowledge of the of the Lyapunov invar-

iants for a stable chaotic attractor, a natural question

to pose concerning the predictability of the nonlinear

time-series is: how far in the future can one

reasonably expect to be able to make useful predic-

tions of a particular trajectory? To asses this question

we can draw on the realization that a dynamical

system exhibiting chaotic behavior is an exact analog

of Shannon’s concept of an ergodic information

source. Consider a discrete information source

which produces a sequence of symbols drawn from

an alphabet sZ[S1,S2,.,SN], and denote the distri-

bution of the realized sequence within s as P(s). The

amount of information that is transmitted by measure-

ment of the sequence (or alternatively the amount of

uncertainty removed at the receiver) can be quantified

by an informational entropy as elucidated by Shannon

(1948). In the case where a joint set of measurements

are performed, the entropy in bits is defined via the

joint probability P(s1,s2,.,sN) as

HNðsÞ ZK
X

sj

Pðs1; s2;.; sNÞlog½Pðs1; s2;.; sNÞ�:

(15)

As N becomes large, this quantity normalized by N

has a finite limit:

hðsÞ Z lim
N/N

HNðsÞ

N
: (16)

Now consider the variable s to be the possible

state-space coordinates of a dynamical system

embedded within a finite-dimensional attractor. Let

the measurements of this variable Si define the

distribution of attractor trajectories in the state-

space. A joint measurement of the Si corresponds to

following the trajectories of N orbits through the

dynamics of the attractor. In this situation the source is

essentially an abstract statement of the system

producing the measurements, and the concept of

entropy of a deterministic dynamical system, where

no concept of probability is immediately evident, is

much the same as in the information-theoretic setting.

This connection was made by Kolmogorov (1960)

who defined h(s) as above, and this information

measure is known as the Kolmogorov-Sinai (KS)
entropy of the dynamical system. The KS entropy is

an invariant of the system trajectories, and so is

independent of the initial conditions or the specific

trajectories observed. Further, it can be shown that the

sum of positive Lyapunov exponents LC is equal to

the KS entropy (Pesin, 1977). This connection allows

one to make a statement regarding the limits of

predictability for a nonlinear system in a local sense.

Consider an arbitrary phase-space for a stable

dynamical system with sufficient dimension to

completely unfold the attractor. Within this phase-

space, any realizable statement regarding the system

can only be specified to a within a certain accuracy.

Within that resolution cell we cannot distinguish

between two distinct state-space points. However, any

nonlinear system with a positive KS entropy has a

degree of intrinsic instability, and the two points

occupying the same resolution cell will, after a time T,

move to disparate and individually resolvable cells in

the state-space. As a rough upper-limit, one can argue

that when the number of states occupied by the system

is equal to approximately the total number of states

available for orbits of the system, that the ability to

predict further state-evolution is lost. A measure of

the total number of states that a d dimensional system

occupies after the passage of time T is dh(s)T, therefore,

a reasonable assessment for the length of time a

particular trajectory remains ‘predictable’ would be

Tz1/h(s).

Reference to Fig. 7 reveals a value of LCz0.12.

Based on this value, the predicted time interval for

which evolution of a particular phase-space trajectory

is tenable is approximately 8.3 days. This value is

considerably lower than one might infer from linear

analysis based on stage autocorrelation.

4.2. Neural network stage predictor

Artificial neural networks (ANN) have evolved

into a large and diverse class of computational

architectures capable of modeling many complex,

nonlinear processes. Advantages of these tools

include the ability to learn complex, intractable

mappings without the requirement of an explicit

physical model or functional description of the

process. ANN also have the ability to store infor-

mation, and can serve well as inference engines able

to combine learned information in response to
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unknown parametric regimes. ANN are computation-

ally efficient predictors with an inherently parallel-

processing structure suited to rapid state estimation.

Difficulties with the ANN include the lack of

assurance that a global error minimum is achieved,

input parameter sensitivity issues, and the possibly

protracted training intervals. ANN are generally

classified as either feedforward, or recurrent

networks, and are either supervised or unsupervised

in the training phase. In this application, we employ a

supervised, feedforward network known as the

perceptron (Wasserman, 1989) as a predictor for

stage values in the WCA1.

The perceptron requires a training phase prior to use

as a predictive algorithm in order to organize the

neuron interconnection weight-states into a structure

through which the relevant information extraction or

recognition can be achieved. The process is essentially

a search through the parametric information space

encapsulated in the training data so as to produce a

minimum error output dictated by the supervisor. The

supervisory function consists of the Euclidean error:

3Z(Ti-Oi), where T indicates the supervisory output of

the ith output neuron, and O the actual output of the ith

unit during a training cycle. The training data consists

of a vector of input-output pairs, each component is

presented to the network which is trained with the

backpropagation (Wasserman, 1989) gradient-descent

algorithm, using a fixed momentum parameter of 0.1,

and a learning rate of 0.001. The ANN activation

function for the hidden layer neurons is a sigmoidal

Bernoulli function with a zero-argument slope of 5.0,

while the output layer units employ a simple linear

scaling with a unit derivative. Details of the ANN

internal computational algorithms can be found in

(Park and Abusalah, 1997).

The purpose of the ANN is to predict the stage

values at some future time, therefore, the output of the

ANN will consist of a single output unit. As discussed

in Section 3.3, it is expected that rainfall, time-of-

year, and previous stage are physically relevant

parameters in determination of the current and future

stage values. These variables are available as historic

time-series records as depicted in Figs. 1 and 2 and

will be used as input data for the ANN. If training the

ANN to learn and predict the phase space trajectories

were based only on the scalar time-series itself as

input data, one would configure the ANN to accept d
inputs of delayed vectors [m(k),m(kK1),.,m(k-dC
1)], with the output set to predict [m(kCp)] where p

is the prediction index (Abarbanel, 1993). This

prescription takes advantage of the fact that an

upper limit of the dynamical attractor dimension is

known, and provides an indication of the number of

independent phase-space variables required for anal-

ysis of the dynamics. Dimensional analysis of the

stage attractor indicated an embedding dimension of

dEZ4 was required for accurate phase space

reconstruction. Following the recommendations of

Abarbanel (1993), we employ the current stage, and

three previous stage values as inputs to the ANN. In

addition, the day of year and rainfall are also input to

the ANN. Based on these assessments, the ANN is

configured to have 1 output neuron, 6 input neurons,

and 2 hidden layers with 35 neurons per hidden layer.

A schematic depiction of the ANN is shown in

Fig. 10. The selection of 35 hidden layer neurons was

based on trial runs with 10, 15, 25 and 35 hidden layer

neurons, from which it was observed that 10 hidden

layer neurons were incapable of converging the

network to a usable neuron weight-state. The selection
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of 35 is intended to provide ample network weights

such that the learning is capable of fully adjusting and

converging the network weights to a pragmatic

prediction state.

In Section 4.1 it was found that a forecast period

of 8.3 days is expected to be a workable limit for

accurate stage data predictions. Beyond this, the

attractor dynamics indicate that trajectories are

capable of transitioning to any point in the phase

space, thereby defeating reliable prediction. In

accordance with this expectation four training sets

were constructed from the available data corre-

sponding to prediction intervals of 1, 2, 8 and 14

days. The training set consists of 730 input–output

patterns taken from the beginning of the time-series

shown in Figs. 1 and 2, corresponding to a time

interval of 2 years. After the ANN was trained, the

resultant neural weight matrix was saved for

prediction runs. A forecast was made by running

the trained network on 6000 days of input data,

starting at day index 1000. The network then

produces a time-series output of predicted stage

data at future intervals of 1, 2, 8 or 14 days. The

predicted time-series for the 1 day forecast interval

is shown with the actual values in Fig. 11. The

prediction is quite good, essentially indiscernible to

the eye at the scale shown.
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In order to quantify the forecast accuracies, the

time-series error magnitude (�3Z jðTiKOiÞj) for each

ANN forecast is presented in Fig. 12, each forecast is

labeled with the RMS error of the time-series, as well

as the correlation coefficient between the actual and

predicted timeseries. For the forecast periods of 1 and

2 days, the mean error is low, less than 1 inch for the

1 day forecast period. The 2 day forecast mean error is

a factor of 1.7 larger than the 1 day forecast mean

error. The 8 day forecast interval has a mean error

which is 5.3 times that of the 1 day forecast, the 14

day forecast is greater by a factor of 7.5. Based on the

analysis of the KS entropy derived from the observed

stage data, a value of approximately 8 days was found

to represent the point beyond which phase space

trajectory forecasting would be problematic. The

question of whether or not an mean prediction error

in excess of 0.36 feet is acceptable, is an operational

decision, nonetheless, the results are consistent with

the expectation of forecasting degradation beyond the

8 day forecast interval.
4.3. Linear model stage prediction

In order to compare the nonlinear model forecasts

to conventional linear models, two linear models were
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constructed and used to predict the stage variations:

(1) an ARMA model, and (2) a Kalman filter (KF).
4.3.1. ARMA stage prediction

The ARMA model is constructed according to

sðt C tpÞ Z sðtÞC
Ds

Dt
tp CRt (17)

where s represents the stage value, t the current time,

tp the prediction time interval, (Ds/Dt) a best fit slope

to the previous stage values s(t), s(t-1), s(tK2), s(t-3),

and Rt the rainfall contribution to the increase in stage

for the current time step.
4.3.2. Kalman filter stage prediction

The Kalman filter is a recursive linear filter, widely

used for linear (and in the extended form, for

nonlinear) state estimation (Kalman, 1960; Zarchan

and Musoff, 2000). The KF estimates the state s of a

ds dimensional discrete time process based on

measurements m of the dm dimensional process

observables, the state can be expressed via the linear

stochastic difference equation:

si Z AsiK1 CwiK1 (18)

where the measurement is represented by

mi Z Hsi Cvi (19)
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A is the ds!ds matrix which relates the previous

state to the current one, and w the process noise

which is assumed to be a zero mean, normally

distributed disturbance with covariance Q. H rep-

resents the dm!ds matrix that relates the state si to

the observation mi. The KF attempts to solve an

equation which estimates the state ŝi as a linear

combination of a prior state estimate ŝiK1 and a

weighted difference between an observation mi and a

predicted observation HŝiK1:

ŝi Z ŝiK1 CKðmi KHŝiK1Þ (20)

The ds!dm matrix K is the Kalman gain, which is

selected to minimize the covariance of the estimate

error eiZsiK ŝi.

The KF implementation proceeds by defining the

process state vector to consist of the dsZ7 variables:

day of year, rain, predicted stage, current stage, and 3

previous stage values. The predicted stage is not

considered an observed variable. The A and H are

assigned to implement a model wherein each variable

consists of a simple linear combination of previous

state variables. The process covariance Q is obtained

from the stage timeseries of Fig. 1. The observation

covariance is set to a low value of 0.01. A training set

of the first 730 points of the stage and rain timeseries

is applied to the KF in order to ‘learn’ the linear

process dynamics (Digalakis et al., 1993). The
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configured KF is then run on the 16 years stage data

to forecast the stage values.

The ARMA and KF models were used to forecast

the stage values at predictive intervals of 1, 2, 8 and 14

days. Fig. 13 depicts the RMS error of each of the

predictive schemes, Fig. 14 plots the correlation

coefficient of each of the forecast timeseries with the

observed data. It can be observed that for forecast

periods of 1–2 days, the models are essentially

equivalent in terms of their mean error. As the forecast

interval increases, the linear models exhibit a linear

increase in forecast error, while the ANN results in a

lower RMS error. These results are consistent with the

assertion that a purely linear model may be less

effective than a nonlinear model in capturing the

dynamics of hydrological chaotic processes.
5. Conclusion

In this paper we have applied the methodology of

dynamical systems theory to analysis of hydrologic

stage data in the Loxahatchee National Wildlife

Refuge. Computation of dynamical system invar-

iants indicates that the stage response constitutes a

chaotic signal arising from a fractal attractor with

a dimension estimated to be 3.78. Evaluation of the

global Lyapunov exponents, in conjunction with the
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Kolmogorov-Sinai entropy, reveals a stage predict-

ability limit of roughly one week. This assessment is

perhaps shorter than one would expect from

examination of a linear correlation function, which

maintains a 90% correlation out to a time interval of

16 days. Examination of the mutual information

function reveals a sharp decline of relative infor-

mation in the first week of time-lag, indicating that

nonlinear interactions limit the predictability in

relation to a linear statistical model. Additionally,

the mutual information stabilizes at nonzero values

for increasing time-lags indicating that significant

information is maintained between hydrologic stage

values of widely differing time scales. This is in

contradiction to the linear autocorrelation that

exhibits near zero values indicating statistical

independence at large time scales. Such comparisons

indicate the importance of examining the assump-

tions of linearity in the application of statistical

analysis, model building and forecasting to natural

processes.

To address the issue of nonlinear estimation, an

artificial neural network was constructed to learn a

two year period of stage dynamics. It was assumed

that local rainfall, previous stage, and time of year

were important system variables. The ANN was able

to successfully learn the system dynamics, and was

applied as a nonlinear forecast tool to estimate the

stage at forecast intervals of 1, 2, 8 and 14 days

over a period of 16 years. Additionally, linear

ARMA and Kalman filter models were implemented

to forecast the stage at the same forecast intervals.

Consistent with the identification of an 8 days limit

to predictability based on the Kolmogorov-Sinai

entropy of the attractor dynamics, the model results

demonstrated significant increases in forecast error

at forecast intervals in excess of 8 days. Model

results demonstrate essentially no differences in

stage forecasting between the linear and nonlinear

models for forecast periods of 1 and 2 days. For the

8 and 14 days forecast, the ANN is observed to

produce lower mean errors than the linear models.

These results can be interpreted as consistent with

the notion that nonlinear models can provide fuller

encapsulation of chaotic dynamics than simple

linear models.

Primary findings of this work are: (1) Hydrologic

stage data in the Loxahatchee National Wildlife
refuge observed at a daily sample interval arise from

a nonlinear dynamical system with a fractal dimen-

sion estimated to be 3.78. (2) The dominant Lyapunov

exponent of the dynamical system in conjunction with

the Kolmogorov-Sinai entropy results in an estimated

limit of stage data of 8.3 days. (3) An artificial neural

network was implemented to learn the system

dynamics and produce forecast values with lower

mean errors than linear models for prediction periods

in excess of 8 days. Notably, the ANN 16-year daily

time-step prediction consumed 27.2 s on a 990 MHz

Pentium III based PC. The accuracy and efficiency of

these results indicate that forecasting of chaotic stage

data based on dynamical systems analysis and

application of nonlinear estimators such as an ANN,

provides an alternative to linear models which may

have difficulty incorporating the relevant nonlinear

physical processes.
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